Hírek-aktuális
2023/3., március 14-én megjelent lapszámunkból
▪ Czikó Zsolt: Szigetelt csillagpontú energiaellátó rendszer technikai szempontból (I.)
Mindannyian tudjuk, hogy a mindennapi életünk villamos energia nélkül elképzelhetetlenné vált. A villamos energia folyamatos rendelkezésre állása számos területen alapvető a biztonságos és hatékony működéshez.
A villamos energia magas elérhetősége alapvető a következő szegmensek biztonságos és hatékony működéséhez:
– ipari installációk: vegyipar, finomítók, gyártóüzemek fontos folyamatainak költséges leállásának elkerülése végett,
– infrastruktúra: ahol a villamos biztonság és tűzmegelőzés különösen fontos, például repterek, kikötők, alagutak, közúti és vasúti közlekedés,
– egészségügy: ahol a beteg, az orvos és a személyzet egészsége forog kockán, például műtők és intenzív ellátási egységek,
– tengeri – kikötői alkalmazások: termékek és utasok biztonságos és környezetbarát szállítása tengeren keresztül, megbízható katonai alkalmazások,
– energia-előállítás és -elosztás: nap-, szél- és vízenergia, nukleáris és egyéb erőművek problémamentes energiaellátásának biztosítása,
– nyersanyag kitermelés: olaj, gáz és egyéb energiaforrás kitermelése közbeni tűz és robbanás megelőzése, valamint felszíni és földalatti bányák villamos installációjának iztonságos működtetése végett.
A cél: a villamos energia rendelkezésre állása bármely nappali vagy éjszakai időszakban, bármely mennyiségben és megszakítás nélkül.
A márciusi számunkban induló cikksorozat az IT-rendszert – amely egy tökéletes megoldás a 365/24 órás folyamatos energiaellátáshoz – mutatja be részletesen.
▪ Dr. Novothny Ferenc: Mobil építészeti egységek csatlakoztatása
Mobil építészeti egységeket, konténereket számos területen – műsorszórás, gyógyászati szolgáltatások, hirdetések, tűzoltás, műhelyek stb. – használnak. Ezek villamos hálózathoz való csatlakozásával egy olvasói levélre válaszolva foglalkozunk.
Kérdés: Cégünkön belül mi vagyunk a felelősei a szállítható és mobil építési egységek „építési” szabványnak megfelelő vizsgálatáért/átvételéért. Ezek általában olyan kabinok vagy konténerek, amelyekben informatikai, felügyeleti és adatkommunikációs berendezések helyezhetők el. A legkülönbözőbb vállalkozásokhoz rendelnek ilyen egységeket. Rendeltetésszerű használatuk, működésük – egy telepítési helyen – néhány naptól több hónapig is tarthat. Mivel a táphálózat földelési rendszere előre nem ismert (TT-, IT- vagy TN-rendszer), így az egységen belüli hálózatnak a külső hálózattól függetlennek, azaz rugalmasnak kell lennie…
Az alábbi kérdések merülnek fel:
1) A hálózatalkotó, biztonságos leválasztó transzformátor szekunder oldala – olyan potenciálfüggetlen PE-vel rendelkező – berendezésnek, vagy betápláló hálózatnak tekinthető-e, amelyre az MSZ HD 60364-7-717 II. ÉV osztályt kell alkalmazni?
2) Ha a leválasztó transzformátort berendezésnek tekintjük, akkor szekunder oldali TN-S hálózat generálása esetén az MSZ HD 60364 szabvány előírásaihoz képest hogyan történik a védővezető (PE) csatlakoztatása a szükséges védőszigetelésű leválasztó transzformátor csillagpontjához, a PE bekötése az ÉV II berendezésnél hogyan értékelendő?
3) Meghibásodás esetén a leválasztó transzformátor szekunder oldalán – a szekunder oldali rendszer ÉV kialakítási típusától függetlenül – előfordulhat-e veszélyes érintési feszültség, olyan, amely szükségessé teszi valamelyik védelmi osztály kialakítását?
4) Az MSZ HD 60364-7-717 szabvány szerinti elvi kapcsolási rajzok, azaz a 717-4-től 717-8-ig valóban helyesen vannak ábrázolva?
Ezeket a kérdéseket megválaszolva foglalkozik a témával a márciusi számunkban megjelenő írás.
▪ Peter Respondek: Az olvadóbiztosító (I.)
Az olvadóbiztosító villamosenergetikai-ellátásban betöltött szerepe több mint 140 éve nem változott. Ez a klasszikus elektrotechnikai alkatrész tartósságának és megbízhatóságának a jele. Éppen ezért az olvadóbiztosítók ma is nélkülözhetetlen részét képezik az villamos rendszertervezésnek. De nem csak ott telepítik és használják.
Az 1885-ben kiadott Zsebkönyv az elektromos világítás szerelői számára [1] már közli az olvasóval: „A biztosítók alkalmazásának célja, hogy ha túl nagy áram folyik a vezetékeken a beiktatott olvadószál kiolvadásával az áramkört megszakítsa, ezzel megakadályozza a vezetékek felizzítását, és így a tűzveszély elkerülhető.” Még az imént idézett szövegrész megjelenésének az évében Thomas Alva Edison szabadalmat kért egy „Fuse Block”-ra, amelyet 1890. október 14-én be is jegyeztek: „US438305A” szabadalom alatt. A szabadalom azonban nem tartalmazza az olvadóbiztosító működési elvét, csak egy speciális szerkezeti kialakítás.
A biztosítókat a kis- vagy nagyfeszültségű villamosenergetikai-rendszereken kívül a modern félvezető alkatrészek védelmére, valamint gépjárművekben is használják. A villamos energia előállításától a felhasználásáig a modern védelmi rendszer szerves részei. Márciusi számunkban induló cikksorozatunk ezért ennek a bevált alkatrésznek a történetével, funkciójával, típusaival, felhasználásával és jövőjével foglalkozik.
Az okosvillamossági technológiák áttekintése (III.)
Az okosotthon cikksorozat előző részeiben érintettük a különböző (Wi-Fi, RF, Zigbee, Thread és Z-Wave) vezeték nélküli vezérlési technológiák jellemzőit, áttekintettük a beépített és felhős funkciókat, valamint a helyi hálózati üzemmód nyújtotta lehetőségeket. Szó esett arról, hogy a WiFi-s megoldások nagyobb része felhőalapú, amelynek előnye, hogy nincs szükség helyi központi egységre, mivel az eszközök közötti automatizációkat a felhő, azaz egy gyártói szerver vezérli. A WiFi router-re kapcsolt felhős eszközök így alapvetően csak a gyári felhőn át, a gyári telefonos applikációról vezérelhetőek, más gyártó felhőjéhez vagy helyi központjaihoz jellemzően nem kapcsolhatóak.
Előfordulhat azonban, hogy más-más platformot használó felhős Wi-Fi-s eszközöket szükséges egymással mégis összekapcsolni. Például, ha a Shelly felhős platformját használó Wi-Fi-s füstérzékelő riasztása alapján kellene egy eWeLink platformot használó Sonoff relét (és egy rákötött szirénát), vagy éppen egy Sonoff villanykapcsolót vezérelni, akkor két különböző felhős platform között kell kapcsolatot létrehozni. Bár a felhős eszközök csak a saját gyári platformjukhoz képesek kapcsolódni, szerencsére létezik néhány olyan köztes platform, amely mind az eWeLink, mind a Shelly Cloud platformhoz képesek kapcsolódni, így használható az eszközök egymással való integrálásához, azaz egy platformok közötti automatizáció létrehozásához.
▪ Dr. Novothny Ferenc: Megfelelő típusú áram-védőkapcsoló a háztartásokban
A megfelelő áram-védőkapcsoló kiválasztása sok esetben gondot okoz. A problémával egy olvasói kérdésre válaszolva foglalkozunk.
Kérdés: Mivel az elektronikus fogyasztók – például a LED-es világítás, a dugaszolható elektronikus tápegységek – egyre gyakrabban fordulnak elő és számuk is egyre nő az egyes fogyasztóknál, ill. a háztartásokban, kíváncsi vagyok rá, hogy az „A” típusú ÁVK mikor válik a nem megfelelő választássá, és helyette egy „B” vagy „B+” típusút kell utólag felszerelni. Létezik-e erre műszaki előírás, vagy szakmai javaslat? Mi történik, ha a napelemes rendszert utólag szerelik fel? Mennyire befolyásolja az ÁVK alkalmazást a PV inverter?
Ezekre a kérdésekre ad részletes választ, és segít a megfelelő ÁVK kiválasztásában a márciusi számunkban megjelenő írás.
▪ Véghely Tamás: Most már értem a napenergiát (XXXII.) –Napelemek típusai – generációk 4.
Amióta a tudósok ráeszméltek arra, hogy a korábban megismert Shockley – Queisser felső határnál (SQ limit) is nagyobb hatásfokot lehet elérni bizonyos trükkökkel (koncentrátorok, többszörös napelem-rendszerek, hibridrendszerek, az élőlények és a technikai eszközök házasítása), azóta egyre nagyobb elvárások fogalmazódnak meg a napelemek energiahozamát illetően. Fontos tisztában lenni azzal, hogy a Shockley – Queisser felső határ csak a hagyományos, szilárdtest, egy-átmenetű P-N (single PN junction) cellákra vonatkozik. Ez azt is jelenti, hogy több átmenetes (multijunction vagy más konstrukciójú) napelemcellák esetében ez a határ lényegesen meghaladható, és akár 80% feletti értékre is kitolható (a kvantumelméletben a 100%-nál nagyobb „hatásfokok” is ismertek, mert más az értelmezés). Cikksorozatunk márciusi számunkban megjelenő része a napelemek 4. és 5. generációjával foglalkozik.
▪ Lambert Miklós: Félvezetős sugárzók nem világítási célra (VIII.)
A fénytartomány másik oldala az infravörös (0,75…1000 mm) hullámhosszúságú sugárzás, az emberi szem számára láthatatlan. Cikksorozatunk előző részében már megkezdtük ezen sugárzás tulajdonságainak bemutatását néhány alkalmazáson keresztül, most a konferencia-hangosításban való alkalmazásával zárjuk a témát. A passzív infravörös térbesugárzást párosíthatjuk hasznos információátvitellel, amelynek talán leghasználatosabb módja a térhangosítás profi rendszerekben. Zenekari hangversenyeknél, koncerteknél még ma is a hagyományos módszer, a hangszórós térhangosítás a használatos, ahol az elsődleges cél a szórakoztatás. Csupán beszédátvitelnél (konferenciák, gyűlések) zavaró is lehet a puszta hangosítás, különösen akusztikára nem tervezett termekben. Kezdetben vezetékes hangosítást használtak (fülhallgatók), de különösen a többnyelvűség igénye ezt túlságosan bonyolította, kifejlesztették az infravörös konferencia-rendszereket, amelyek ma minden igényt kielégítenek, használatuk pedig nagyon egyszerű, szimpatikus. A hangátvitel speciális területe, ha egy embernek sok ember számára van közlendője. Cikksorozatunk márciusi számunkban megjelenő része az infravörös sugárzás konferenciahangosításban való alkalmazását ismerteti.